
JOURNAL OF COMPUTATIONAL PHYSICS 101,94-103 (1992) 

An Adaptive Mesh Refinement Method for Nonlinear 
Dispersive Wave Equations 

ERIC S. FRAGA 

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3GI 

AND 

JOHN LL. MORRIS 

Department of Mathematics and Computer Science, University of Dun&e, Dundee, DDI 4HN, Scotland 

Received November 6, 1987; revised March 4, 1991 

Adaptive mesh refinement techniques are often essential for solving 
nonlinear partial differential equations numerically. A new method for 
spatial grid refinement is developed and implemented. Several numeri- 
cal experiments are performed to compare the method with results 
obtained using a uniform grid. The new method has the following 
properties: it is simple to implement and requires little modification of 
existing code to use; the solutions achieved as a result of using these 
methods prove to be accurate; and, the stability of the numerical 
methods is affected minimally. The effect of the grid refinement on 
essential properties of some of the equations, such as conservation, is 
minimized through the use of piecewise uniformity. 0 1992 Academic 

Press, Inc. 

1. NONLINEAR DISPERSIVE WAVE EQUATIONS 

Recently, with the advent of techniques such as inverse 
scattering [ 11, there has been a shift in interest from linear 
partial differential equations to nonlinear differential equa- 
tions. Of particular interest is a class of equations known as 
nonlinear dispersive wave equations. As the name suggests, 
these equations exhibit both dispersion and nonlinearity. 

These nonlinear dispersive wave equations are of interest 
because of the many different problems they model. They 
are also of interest from a numerical point of view because, 
in general, solutions are not analytically available. With 
increases in the power and in the memory of computers, 
nonlinear problems have become tractable. It is now 
possible to attack these problems on computers that sit 
on a person’s desk whereas, even a few years ago, 
these problems required huge mainframe computers. 
Nevertheless, special techniques to reduce the requirements 
needed to effectively solve these equations numerically are 
still needed, techniques such as adaptive mesh refinement. 

A special property of some nonlinear dispersive wave 

equations is that the solutions may exhibit solitons. There 
are many different examples of these types of equations, 
each modelling several different physical problems. We shall 
concentrate on two equations, the Kortewegde Vries and 
the nonlinear Schrodinger equations. 

The Korteweggde Vries (KdV) equation, 

where 

u, + uu, + EU,,, = 0, (1) 

24 = u(x, t), 

4-G 0) = g(x), 

--cc<<<<, 

t 2 0, 

and E is a real positive constant, is a simplified model of the 
full Euler equations for long waves. In particular, it is one of 
a set of eight equations which model long waves of small 
amplitude [lo]. It arises in many areas, including plasma 
physics, shallow water wave problems, electric circuit 
theory with nonlinear capacitance, and in the theory of 
gravity waves in water of finite depth. The main properties 
of the KdV equation are that the waves propagate in 
one direction only and that solitons may appear given 
appropriate initial conditions. 

The nonlinear Schrodinger (NLS) equation, 

iu,+u,,+q lul2u=O, 

i* = - 1, (2) 

where u(x, t) is a complex valued function for - co < x < cc, 
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t > 0, and q is a real valued parameter that describes the 
evolution of any weakly nonlinear, strongly dispersive 
almost monochromatic wave. The problems modelled by 
this equation may appear in laser optics, plasma physics, 
deep water wave models, etc. The NLS equation may also 
exhibit soliton solutions. An important feature of the NLS 
is that the waves may propagate in both directions. 

1.1. Solitons 

The two equations above, as well as others such as the 
sine-Gordon equation, may exhibit soliton solutions given 
the appropriate initial conditions [4]. Solitons appear as a 
result of the balance between the dispersion and the non- 
linearity of the equations. Whereas dispersion will tend to 
spread out the wave, the nonlinear component of the equa- 
tion tends to steepen the wave. Solitons were first reported 
by John Scott Russell in 1844 [ 111. Since then, this solitary 
wave phenomenon has appeared in many diverse areas of 
mathematics and physics, including meteorology, elemen- 
tary particle physics, plasma studies, and laser physics. The 
term, soliton, was not coined until 1967 by Zabusky and 
Kruskal [ 171. 

It is important to note that the soliton is not a feature of 
all nonlinear partial dispersive wave equations which 
exhibit solitary waves. A soliton is more than just a solitary 
wave, having the property that its shape is not affected by 
collisions with other solitons. 

The KdV and NLS equations allow waves of different 
speeds, so collisions of solitons are possible. For the KdV 
equation, solitons propagate in only one direction and the 
speeds of the solitons are directly proportional to their 
amplitudes. For the NLS equation, solitons may propagate 
in both directions and there is no direct relationship 
between the speed and the amplitude. 

For the numerical analyst, solitons are interesting 
because many of the unsolved problems related to soliton- 
like behaviour are not solvable by the inverse scattering 
method. Few or no analytical tools exist for many of these 
problems. 

2. MESH REFINEMENT 

The numerical solution of nonlinear partial differential 
equations usually involves an implicit finite difference or 
Galerkin-type scheme. Due to the nonlinearity of the 
system, these methods require small spatial and temporal 
mesh spacing to achieve reasonable accuracy and to avoid 
nonlinear instability. A second property of the type of non- 
linear partial differential equations characterized by the 
KdV and NLS equations is that they model long time 
problems. These requirements, in combination, imply that a 
great deal of computer time is necessary. Since only very 
specific areas of the solution require a fine mesh to achieve 
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this high accuracy, mesh refinement is both essential and 
applicable. A suitable mesh refinement technique will 
generate a small mesh spacing where necessary and a 
coarser spacing, where the solution is not as critical. With 
mesh refinement, new problems may be solved using 
resources currently available, problems that are intractable 
using a uniform mesh due to time or space requirements. 

There are two general methods for adaptive mesh reline- 
ment reported in the literature. The methods of Berger and 
Oliger [2] for hyperbolic partial differential equations and 
of Flaherty and Moore [S] for parabolic equations rely on 
error extrapolation to determine parts of the mesh to reline 
recursively. The other type of method uses an equidistribu- 
tion principle to generate a nonuniform mesh. The usual 
case involves equidistributing some derivative of the 
solution or the arclength of the solution itself. Examples 
for this method include those described by White [16], 
Manoranjan [9], and Sanz-Serna and Christie [13]. 
Extensive reviews of this second type of method have been 
given by Thompson [ 143 and Russell and Christiansen [ 121. 

2.1. A Novel Method 

The method we wish to introduce is based on the 
geometric description of the solution and differs in 
approach from either type mentioned above: error estima- 
tion is not used and no particular quantity is equi- 
distributed. The overall mesh created is nonuniform, 
although it will actually consist of a set of contiguous non- 
overlapping uniform sub-meshes. 

The basic approach is as follows: locate each soliton in 
the solution, place a fine mesh so as to cover the support for 
each soliton, and fill in the gaps between each fine mesh with 
coarsely spaced points. Each sub-interval, be it the support 
for a soliton or a gap between two solitons, is discretized 
uniformly. However, any numerical method used will work 
on the whole mesh at once, considering it to be a non- 
uniform mesh overall. 

2.1.1. Locating the Solitons 

The first step is best described in the form of an algorithm, 
shown in Fig. 1. Smin is used to calculate the cutoff value 
used to determine the location of solitons. Any value in the 
solution above this cutoff value is considered to be part of 
a soliton. In practice, we have found that Smin = 50 (i.e., 
a cutoff value equal to 2% of the range of values in the 
solution) works well. 

Applying this algorithm to the set of solution values will 
identify the location of every soliton (or group of solitons) 
in the solution, although this method may fail in extreme 
cases for a given value of S,,,. Since the cutoff value is set 
according to the range of function values, if the range of 
sizes of solitons is great, some of the smallest solitons may 
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for , + 1 to R do 

if not inuoliton then 

if u, > cutoff then 

ksoliton + true 

3+3+1 

start-of-soliton, c i -  1 

endif 

else 

if u, < cutoff then 

ksoliton + false 

end-of-soliton, - z 

end11 

endif 

endfor 

number.ofsolitons + j 

FIG. 1. Locating the solitons. 

be missed. That is, if there are any solitons whose 
amplitudes are smaller than cutoff (defined in Fig. 1 ), these 
solitons will be skipped over. Smin may be increased for 
these cases. Increasing Smin, however, may cause the 
method to find some spurious oscillations and treat them as 
solitons. Nevertheless, this will only increase the number of 
points in the mesh and will not affect the numerical method. 
The limiting case, as Smin -+ 00, is a uniform mesh covering 
the complete interval defined for the problem. 

The step described above locates the solitons but does not 
define the full domain of each soliton. The intervals, denoted 
by I, = [aj, bj], j = 1, . . . . ns, where aj = start-of-solitonj, 
bj = end-of-soliton,, and ns = number-of-solitons, are 
extended on both sides by an amount proportional to the 
size of each interval: new intervals are defined as 

I;+ Caj-PX IZjl,bj+PX I~jllt j=l , . . . . ns. (3) 

The value of /? is determined using the initial condition. It is 
defined as the minimum value which allows all solitons in 
the initial condition to be represented accurately on the 
non-uniform mesh in terms of the L, energy. 

The intervals 1;, although sufficient to cover the support 
of each soliton, need to be extended even further. Due to the 
evolutionary aspect of the problems, the solitons may move 
from one time step to the next. If the intervals are not 
extended, part of each soliton may be outside its respective 

interval after a time step. Therefore, we further extend the 
original intervals Ii : 

I,’ + [a,- buffer x fi x IZ,l, bj+ buffer x B x IZ,l], 

j = 1, . . . . ns, (4) 

where buffer depends on the problem being solved. In 
practice, we have used values ranging from buffer = 1 to 
buffer = 3. 

The procedure of defining the intervals that cover the 
solitons, with all the necessary extensions, may cause two or 
more intervals to overlap. After each extension above, any 
overlapping intervals are combined into one bigger interval 
before proceeding with the next step. 

2.1.2. Defining the New Mesh 

A mesh may be defined with this final set of intervals. The 
mesh consists of several contiguous uniform sub-meshes. 
Each interval corresponds to one uniform sub-mesh with a 
spatial discretization hgoal. The gaps between each interval 
(and before the first interval and after the last interval) are 
also discretized uniformly, with Ngap points placed in each 
gap. The total number of points N is given by 

where ns is the number of intervals after all extensions and 
overlaps are taken care of. N is not constant over time as it 
depends on the numbers of solitons and the width of the 
intervals used to cover the solitons. 

The value of hgoa, is also determined using the initial con- 
dition. It is the maximum value such that the L, energy of 
the initial condition, discretized using a uniform mesh, is 
resolved accurately. 

2.1.3. Summary 

This novel mesh refinement method is based on the 
geometric properties of the solution to a partial differential 
equation. The main advantages of this method are due to its 
simplicity: it is easy to implement, adds little overhead, and 
places points in the mesh only where they are needed. Since 
it refines only in the spatial dimension, any time integration 
scheme may be used. In particular, schemes which are 
adaptive in time should work well in conjunction with this 
method. 

Although the method has been developed for soliton 
based solutions, any problem which exhibits soliton-like 
solutions may make use of the same techniques. Likewise, it 
is not necessary to use function values to determine the 
areas that need refinement. Other values may be used with 
only minor changes to the algorithm. For example, the first 
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derivative could be used which would allow the method to is only valid on a uniform mesh. In order to solve the KdV 
refine only where a solution was steep. This would be well equation on a non-uniform mesh, we need to modify this 
suited to shock-type problems. approximation. Consider the generalization of each 

approximation: 
3. NUMERICAL EXPERIMENTS 

The performance of the new method, labelled soliton in 
the discussion that follows, is evaluated by solving several 
test problems. A method based on a uniform mesh is used 
for comparison. Both the KdV and NLS equations with 
appropriate initial conditions are solved. 

For notational purposes, vectors are denoted by bold 
lowercase letters and matrices by uppercase letters. In the 
following tables, no values for n, the number of points in the 
mesh, for the soliton method are given. The number of 
points changes as solitons move and interact. The value of 
h given for the soliton method is that described, in the 
previous section, as hpoa,. 

All runs were carried out on a SUN 3/160 computer with 
the MC68881 floating point co-processor in the Depart- 
ment of Mathematics and Computer Science and the 
University of Dundee. 

3.1. The Kortewegde Vries Equation 

3.1.1. The Numerical Method 

~xxxlx=x,~j=~~2 “i,,wj3 i=& . . . . n-2, (9) 
i#i 

and 

i= 1 ) . ..) It - 1. (10) 

Expanding the right-hand sides using Taylor series and 
solving for the CQ, j’s and pi,,%, we obtain 

-6 
Q’i-2=hi-2(h1~2+hi~1+hi)(hi_z+h,~1+hi+hi+l) 

6 

-6 
%.i+ I = 

hi+ Ithi- I+ hi)(hi-, + hi- I+ hi) 

We now introduce the numerical method used to test the 
6 

ai,i+2= 

soliton method on the KdV equation (1). The first step in hi+,(h,-,+hi+hi+,)(hi-,+hi-,+hi+hi+,)’ 
developing the method involves a semi-discrete approxima- i = 2, . . . . n - 2, 
tion to (1): 

and 

(6) 

where w(t) is the semi-discrete approximation to u(x, t) 
with w;(t)zu(x,, t), i=O ,..., n, and a=x,<x,< . . . < 
x,=b. 

Pi.i+l= ’ hipI + hi’ 
i = 1, . ..) n - 1, 

-One standard approximation [ 171 is where hi = xi+ 1 - xi. This general approximation for a non- 

and 

uniform mesh reduces to that given in (7) and (8) for a 
(-Wi-*+2Wi-I-2Wj+I+wj+*) uniform mesh. 

The ordinary differential equation (6) may now be solved. 
=(L.w), (7) Solving it directly, approximating the integral using the 

midpoint rule, and the exponential with a l-l PadC 
approximation, we obtain 

uu.x I I = I, = 
(Wi-~+wi+Wi+l)(Wi+l-Wi-l) 

3 h 

= (N(w) . W)i, 

[ 
z-~M(v”+‘)+M(““)) vm+’ 1 
= r+$(vm+l)+M(vm)) L 1 P, (11) 

- 
where M(w). w = -N(w). w - EL. w (L and N correspond 
to the linear and nonlinear parts of A4, respectively) and 
h = xi+ 1 - xi, i = 0, . . . . n - 1. This approximation, however, 

where v is the fully discrete approximation to u with uy z 
u(Xi, t,), with t, = t,,- , + z, m = 1, . . . . and Z is the identity 
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TABLE I 

Timings for Uniform Mesh, KdV Equation 

Problem h T Time E, E, Energy 

Single soliton 0.0049 0.01 5.51 0.393 0.072 0.0867482 
Single soliton 0.0049 0.005 6.78 0.304 0.056 0.0867624 
Double soliton 0.49 1.0 8.47 0.110 0.0222 0.839977 
Double soliton 0.49 0.5 16.70 ,104 0.0210 0.840006 

matrix. Equation (11) is a system of nonlinear equations 
which we solve for v”’ + ’ using a Newton-Raphson method 
with vm as a starting value. 

This numerical method is used in all the subsequent tests 
based on the KdV equation, with or without mesh reline- 
ment. In fact, the same code is used as a basis for all of the 
tests. 

3.1.2. Single Soliton Problem 

This problem consists of the KdV equation with the 
initial condition 

g(x) = 3c sech2(Ax + d), 

at t = 0, whose theoretical solution is 

u(x, t) = 3c sech2(Ax - Bt + d), 

where A=${bc/E} and B=$c,/&. 
The single soliton problem was solved on the interval 

[a, b] = [0, 101 for t =0 to t=25 with b= 1.0, c=O.3, 
d = - 12.0, and E = 4.84 x 10 P4. The long time period is used 
so that any problems with any of the methods may show up 
if they exist. The large interval is needed because the soliton 
moves across the interval in that time period. The initial 
energy for this problem is 0.0867593. The parameters for the 
soliton method were set up as Ngap = 3 and buffer = 2. 

As can be seen from Tables I and II, the soliton method 
compares favourably with the uniform mesh method. The 
accuracy of the soliton method is comparable to that of the 
uniform mesh yet the amount of time needed to compute 
the solution is greatly reduced. However, the uniform mesh 
method suffers less amount of change in the L, energy. For 
the smaller value of r, the difference is small in either case. 

TABLE II 

Timings for Soliton Method, KdV Equation 

Problem h 5 Time E, E, Energy 

Single soliton 0.0049 0.01 0.77 1.487 0.273 0.0860020 
Single soliton 0.0049 0.005 0.96 0.208 0.038 0.0868131 
Double soliton 0.49 1.0 1.84 0.010 0.0017 0.837283 
Double soliton 0.49 0.5 3.71 0.037 0.0069 0.832947 

3.1.3. Double Soliton Problem 

A double soliton initial condition was used with the KdV 
equation (1) with E = 1. The theoretical solution for this 
problem, given by Hirota [8], is 

u = 12(ln F),X, 

F=l+f,+j-,+ 2 
( > 

2 fif2, 
2 I 

where 

f=,C-~8(X-X,)+OLjfl 7 i= 1, 2. 

The parameters xi, x2, LY,, and 01~ represent the initial 
displacements and amplitudes of the two solitons. In the 
numerical experiments conducted, the following values were 
used: 

x1 = - 1.0, cI1 = 0.2 

x2 = - 150.0, a2 = 0.3. 

The soliton with the larger amplitude starts to the left of the 
smaller soliton. As the velocity of the solitons is directly 
related to their amplitudes, the larger soliton should even- 
tually catch up and pass through the smaller one. Tables I 
and II again show the results of running both methods on 
this problem. All runs were done on the interval 
[ -250, 7501 up to t = 7000 with E = 1.0. The initial energy 
is 0.84. 

Associated plots are shown in Figs. 2 and 3. Of special 
interest is Fig. 3 which shows the region of refinement for 
the soliton method for the double soliton problem. Initially, 
there are two regions of refinement which come together to 
form one region. This region eventually splits back into two 
regions when the faster soliton has overtaken the slower 
one. 

3.1.4. Non-soliton Initial Condition 

Although the soliton method was designed for soliton 
solutions, the KdV equation with a non-soliton initial con- 
dition was also tested. The initial function used was a linear 
hat, 

g(x) = 
height (x - x,“d), xrn,d < x G xc”d 

Xmid - xend 

x ’ Xend 

with xStart = - 59 Xmid = 0, xend = 5, and height = 0.9. Equa- 
tion (1) with E = 4.84 x lo4 was solved. 
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FIG. 2. Double soliton with soliton method: h = 0.4883,~ = 1 .O, buffer = 2, S,,, = 50, ~~~~ = 3, quadratic interpolation, 

FIG. 3. Refinement areas for double soliton problem. 
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Figure 4 shows the result of solving this problem using 
the soliton method. As the amount of time needed to solve 
this problem was great (approximately 30 h of computer 
time), only the soliton method was tested. The purpose of 
this test was to demonstrate the fact that the soliton method 
can be used to solve problems with non-soliton initial 
conditions. At worst, the soliton method will reduce to a 
uniform mesh throughout the whole interval. 

3.2. The Nonlinear SchrSdinger Equation 

3.2.1. Numerical Method 

The numerical method used to solve the NLS equation is 
based on a semi-discrete Galerkin method using piecewise 
linear basis functions and product approximation [3, 151 
for the nonlinear term. 

The final result of applying the above method to the NLS 
equation is 

MI + su + qMf(u) = 0, 

u(t) = (u,, . . . . U,)=, 

uj = (V,, W;)=, 

(12) 

FIG. 4. Hat Linear initial condition with soliton method: 
where u,(t) is a semi-discrete approximation to u(x,, t) and -40 <n < 40, h = 0.005, T = 0.005, j3 x buffer = 1, Smin = 50, N,,, = 300, 
V and W are the semi-discrete approximations to the real quadratic interpolation. 

and complex parts, respectively, of U: 

S= 

2hJ 

W 

I= 
1 0 [ 1 0 1’ 

1 -- 
ho 

A 

+A 
0 

hoI 
2(hO+h,)Z h,Z 

hi-,Z 2(hi-1 +hi)Z hi1 

h,MzZ 2(h,-2+h,-,)Z h,-,Z 

k-,1 2h,_,l 

- 

1 
k-z A 

1 1 -A -- 
hn-, hn-, 

A 
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and TABLE III 

0 1 
A= [ 1 -1 0 * 

Finally, 

f(t) = PO, ..., fJT, 
fi = u;ujAuj. 

This semi-discrete system is similar to that described by 
Griffths et al. [6] and by Herbst et al. [7], but for a non- 
uniform mesh. In fact, this system reduces to that described 
by Grifliths et al. on a uniform mesh. 

The system of ordinary differential equations (12) is 
solved by using a Crank-Nicholson method to yield the 
nonlinear system of equations 

where c? = (a:, . . . . a;)’ with ~(7 as the discrete approxima- 
tion to u(x,, rn x z) and N(a”) is a diagonal matrix with 
entries (~7)~ cryA, j = 0, . . . . n. This system is solved using a 
Newton-Raphson type of solver with Euler’s method to 
generate the starting value. 

3.2.2. Problems 

The NLS equation (1) was solved numerically with 
several different initial conditions: 

(a) q = 1, u(x, 0) = & sech(& x) e”.5icx with a = 0.5 
and c = 1. This initial condition yields a single soliton solu- 
tion. The L, energy is 2.82843 initially. 

W-q = 1, u(x, 0) = fi [sech(& x,) e0.5i’1x1 + 
sech(ecr x2) e0.5i’2r2], ci = 1.0, c2 = 0.1, x1 = x, x2 = x - 25. 
This results in a two-soliton solution. Both solitons have the 
same amplitude but the left one moves at a greater speed 
and eventually passes through the right one. Initially, the 
energy is 5.65685. 

(c) Same initial condition as in (b) except with 
c2 = - 1.0 and x2=x - 50. In this case, the two solitons 
move in opposite directions with the same speed and 
amplitude. Initially, the energy is 5.65685. 

(d) q=18, U(x,O)=sech(x). A value of q=2* N*, 
N= 1, . . . generates bound states of N solitons. This value of 
q is a very stringent test of any numerical scheme (and hope- 
fully also of any adaptive mesh scheme) due to the steep 
gradients that develop. Initially, the energy is 2.0. 

Timings for Uniform Method, NLS Equation 

Problem h 

lt i 
0.195 
0.195 

(cl 0.195 
(d), T=0.98 0.03125 
(d), T= 3.75 0.0586 
(e) 0.125 

T Time (m) Energy 

0.125 24.573 2.82838 
0.125 39.191 5.65663 
0.125 31.549 5.65680 
0.00125 2.385 2.00009 
0.00125 7.122 2.00043 
0.01 19.700 13.87910 

(e) q = 1, u(x, 0) = (1 - ix) eeo.lX2. This is a non-soliton 
initial condition which should provide a good test for the 
soliton method especially. Initially, the energy is 13.87165. 

3.2.3. Results 

Again, both methods were run for each of the problems 
(a) through (e). The soliton method was run with buffer = 2 
and Ngap = 3, and with the cutoff value set to 2% 
(Smin = 50) of the range of the solution values. Tables III 
and IV show the results for all problems. 

Single soliton. The soliton method works well on this 
problem although a small amount of energy is lost. 

Double soliton. The solution to problem (b) exhibits the 
collision of two solitons moving at different speeds. The 
soliton on the left at the initial time has a higher speed than 
the one on the right. As a result, the faster soliton eventually 
catches up and passes through the slower one. 

Problem (c) also involves the interaction of two solitons 
except, in this case, the two are moving in opposite direc- 
tions. 

The results for these two problems are similar to those for 
problem (a). Again, a certain amount of energy is lost by the 
soliton method. The improvement in execution time is not as 
dramatic as it is for problem (a) because, in problems (b) 
and (c), the regions of refinement are a significant portion of 
the overall interval. If the problems were solved for longer 
time periods and, hence, larger intervals were required, the 
reduction in execution time for the soliton method would be 
more noticeable. 

TABLE IV 

Timings for Soliton Method, NLS Equation 

Problem h 7 Time (m) Energy 

(a) 0.195 0.125 9.897 2.81421 
(b) 0.195 0.125 23.156 5.62240 
(cl 0.195 0.125 24.923 5.62285 
(d), T= 0.98 0.03125 0.00125 1.117 1.99933 
(d), T= 3.75 0.0586 0.00125 2.495 1.95595 
(d), T= 3.75 0.0250 0.00125 5.184 1.99862 
(e) 0.125 0.01 11.000 13.71370 
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FIG. 5. Problem (e) with So&on method: h = 0.125, r = 0.01, buffer = 2, Smin = 50, N,,, = 30, cubic interpolation. 

Bound state of three solitons. Problem (d) is a severe test 
for any numerical method and should therefore also be a 
good test for 3 spatial adaption scheme. The results show 
that the soliton method performs well. Note that this type of 
problem is more suited to an equi-distribution-type mesh 
refinement method because, although the soliton (and 
hence the region of refinement) does not move, the spatial 
derivatives change radically from time step to time step. The 
value of hgoal must be small enough for the worst case. This 
restriction applies equally as well to the uniform mesh. 

Non-soliton initial condition. The last experiment tried, 
(e), consists of a non-soliton initial condition. This experi- 
ment is carried out to again show that the soliton method is 
not restricted to sol&on data. Figure 5 shows that the final 
result, viewed from the rear, at T = 50, consists of two large 
peaks with a smaller peak between them. The picture agrees 
with those shown by Grifliths et al. [6]. 

The soliton method is effective for this problem although 
it does not show such a dramatic reduction in computer 
time. Even though the soliton method was developed for 
soliton solutions, this experiment shows that it is not limited 
to such. At worst, the soliton method will generate a uniform 
mesh with only a slight overhead. 

4. CONCLUSIONS 

The sol&on method, by construction, is well suited to 

solving problems whose solutions yield solitons. As has 

been shown above, the method is faster and as accurate as 
the uniform method. For the KdV equation, where lack of 
energy conservation would show up in phase errors, the 
soliton method achieves excellent results. The mesh 
generated by the soliton method, although nonuniform, 
consists of piecewise contiguous uniform sub-meshes. This 
amount of uniformity appears to be enough to enable the 
numerical method to, in practice, meet the conservation 
requirement to a sufficient tolerance. 

The behaviour shown for the NLS equation is consistent 
with the behaviour shown for the KdV equation. Due to the 
independence of the speed and amplitude of the solitons for 
the NLS equation, a lack of energy conservation would 
not show up readily in actual plots of the solutions. 
Nevertheless, the results show that energy conservation is 
achieved to within a reasonable tolerance. 

The soliton method generates accurate solutions 
including respecting the property of conservation of energy 
exhibited by the types of equations discussed. Even though 
the method has been developed for soliton producing equa- 
tions, it is not excluded from being used on non-soliton 
problems, as shown by the numerical experiments. 
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